روشهای محاسبه دوره تناوب توابع

تعریف

تابع f را متناوب گوئیم هرگاه برای هر عضو دامنه آن مانند ، مقداری ثابت و حقیقی مانند T>0 یافت شود به قسمی که اولا و ثانیا باشد. آنرا یک دوره تناوب تابع می‌گوئیم. بدیهی است که دوره تناوب یک تابع منحصر بفرد نیست برای مثال اگر شکل توابع مثلثاتی مثل که در R تعریف شده هستند که دربازه متناوب می‌باشند یعنی بعد از هر تکرار به اندازه شکل نمودار تکراری است. بنابراین و و الی آخر نیز دوره تناوب تابع sin می‌باشد زیرا:



با توجه به مطالب ذکر شده قضیه مهم زیر را در مورد توابع متناوب بهتر است که همواره به یاد داشته باشیم.

قضیه

اگر تابع f با دوره تناوب T متناوب باشد آنگاه با دوره تناوب nT نیز متناوب است. قضیه فوق با استقرای ریاضی براحتی قابل اثبات است. از این قضیه ، روشن می‌شود که برای هر دوره تناوب T همه مضارب طبیعی آن نیز دوره تناوب تابع هستند. ولی ما کوچکترین عدد مثبت T را که به ازای آن است، به عنوان دوره تناوب اصلی می‌شناسیم و هدف یافتن آن است.

روشهای بدست آوردن دوره تناوب اصلی توابع متناوب

بدست آوردن دوره تناوب توابع از روی تعریف همیشه کار آسانی نیست البته بعضی از توابع را می‌توان از این طریق به دوره تناوبشان دست یافت ولی بطور کامل بهتر است با قوانین زیر برای بدست آوردن دوره‌های تناوب آشنا باشیم.

  1. دوره تناوب توابعی که بصورت توانهای فرد و که برابر است با برای توابع با ضابطه یا نیز بطریق بالا استدلال می‌شود.
  2. دوره تناوب توابعی که بصورت توان زوج  و که مساوی است با برای توابع با ضابطه یا استدلال بطریق فوق است.
  3. دوره تناوب توانهای فرد یا زوج
  4. {\tan ax} و که برابر است با:
  • توضیح

برای هر یک از موارد 1 ، 2 و 3 که در بالا ذکر شد می‌توان بسادگی نشان داد که در حالت کلی (برای مقادیر مثبت یا منفی a)

{T=\frac{2 \pi} {| a |} یا از سوی دیگر بجای کمان ax ، ممکن است کمان ax+b بکار رفته باشد.
که در آنصورت هم قوانین فوق درست هستند برای مثال دوره تناوب تابع با ضابطه مساوی است با

  1. هرگاه دو تابع با ضابطه‌های و با دوره تناوبهای و متناوب باشند، آنگاه تابع با ضابطه با دوره تناوب یعنی کوچکترین مضرب مشترک و متناوب است. از این قضیه در تعیین دوره تناوب مجموع و تفاصل توابع متناوب استفاده می‌شود.
  2. هرگاه حاصلضربی از توابع مثلثاتی داشته باشیم، برای تعیین دوره تناوب تابع اصلی ، ابتدا به کمک اتحادهای مثلثاتی عبارت را به جمع تبدیل می‌کنیم و دوره تناوب آن را بدست می‌آوریم.
  3. ترکیب توابع مثلثاتی و توابع غیر خطی متناوب نیستند. برای مثال توابع ، متناوب نیستند.
  4. مجموع ، تفاضل ، حاصلضرب و تقسیم یک تابع متناوب و یک تابع غیرمتناوب ، تابعی است غیر متناوب برای مثال توابع با ضابطه یا متناوب نیستند.
  5. اگر g متناوب باشد تابع ترکیب ، نیز متناوب است. با همان دوره تناوب تابع . برای مثال تابع متناوب است و دوره تناوب آن می‌باشد.
  6. اگر F تابعی زوج باشد، توابع با ضابطه‌های و با دوره تناوب متناوب هستند. برای مثال تابع با ضابطه دارای دوره تناوب است.
  7. اگر F تابعی زوج باشد تابع با ضابطه با دوره تناوب متناوب است.
  8. دوره تناوب با ضابطه و هر مضربی از آن مساوی است.
  9. در توابع کسری که صورت و مخرج آنها شامل و هستند. در صورت امکان ساده شدن ، قبل از محاسبه دوره تناوب بهتر است صورت و مخرج کسر را بر و تقسیم کنیم و بعد دوره تناوب آن را بدست آوریم.
/ 4 نظر / 236 بازدید
ساناز

سلام مطالب وبلاگ من در مورد ریاضی است اگه یه سر بزنین ممنون می شم. در ضمن اگه موافقید منو با نام نظریه ها و قاعده های ریاضی لینک کنید.با تشکر.

پریماه

سلام!!! خسته نباشید. خیلی وب خوبی دارین. واقعا از مطالبتون استفاده کردم. من می خوام در مورد کاربرد ریاضیات در زندگی مقاله بنویسم. اگه میشه در مورد منابع راهنماییم کنید؟؟؟

محسن

سلام . تشکر از این پست مفید . اگه در زمینه توابع متناوب. شناختشون و پیدا کردن دوره تناوبشون مطلب مفیدی دارین ممنون میشم برام ایمیل کنید . شاد باشید

مسعود

سلام واقعا وب توپی داری آخه من داشتم درس میخوندم نمی فهمیدم معلم چی گفته یه سر به وب شما زدم الان کامل فهمیدم خیلی ممنون انشالله هر چی از خدا میخوای بهت بده